Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ivan E. Kareev, ${ }^{\text {a }} \ddagger$ Sergey F. Lebedkin, ${ }^{\text {b }}$ Susie M. Miller, ${ }^{\text {c }}$ Oren P. Anderson, ${ }^{\text {c }}$ Steven H. Strauss ${ }^{\text {c* }}$ and Olga V. Boltalina ${ }^{\text {c }}$
${ }^{\mathrm{a}}$ Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia, ${ }^{\text {b }}$ Forschungszentrum Karlsruhe, Institute for Nanotechnology, Karlsruhe 76021, Germany, and ${ }^{\mathbf{c}}$ Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
\ddagger Also at: Forschungszentrum Karlsruhe Institute for Nanotechnology Karlsruhe 76021 Germany

Correspondence e-mail:
steven.strauss@colostate.edu

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.054$
$w R$ factor $=0.148$
Data-to-parameter ratio $=9.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,4,10,14,19,25,35,41,49,60,66,69-Dodeca-kis(trifluoromethyl)- 1,4,10,14,19,25,35,41,-49,60,66,69-dodecahydro $\left(C_{70}-D_{5 h(6)}\right)[5,6]-$ fullerene benzene disolvate

The title compound, which crystallized with two molecules of benzene in the asymmetric unit, $\mathrm{C}_{82} \mathrm{~F}_{36} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$, is one of two isomers of $\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{12}$ that represent the first structurally characterized fullerene derivatives with exactly 12 substituents. This isomer consists of an idealized $D_{5 h}-\mathrm{C}_{70}$ core with the $12 \mathrm{CF}_{3}$ groups arranged on a para ${ }^{7}$-meta-para ribbon of edgesharing $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons plus an isolated $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagon. There are no cage $\mathrm{Csp}{ }^{3}-\mathrm{Csp}^{3}$ bonds. As in the recently published structures of $C_{s}-\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{8}$ and $C_{1}-\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{10}$, there are numerous $\mathrm{F} \cdots \mathrm{F}$ intramolecular contacts between pairs of neighboring CF_{3} groups that range from 2.526 (5) to 2.930 (5) Å.

Comment

High-temperature reactions of $\mathrm{C}_{60}, \mathrm{C}_{70}$, or $\mathrm{Y} @ \mathrm{C}_{82}$ with $\mathrm{CF}_{3} \mathrm{I}$, $\mathrm{C}_{2} \mathrm{~F}_{5} \mathrm{I}$, or $\mathrm{Ag}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)$ followed by sublimation at $673-773 \mathrm{~K}$ have yielded fullerene $\left(R_{f}\right)_{n}$ derivatives with thermodynamically stable addition patterns that are both asymmetric and unprecedented in fullerene $(X)_{n}$ chemistry. The asymmetric isomer $1,4,10,19,25,32,41,49,54,60,66,69-\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{12}$, (I), is reported in the preceding paper in this issue (Kareev et al., 2006). The title compound, (II), a different asymmetric isomer of the same composition, has also been prepared and we report its crystal structure here.

(II)

The structure of (II), shown in Fig. 1, consists of an idealized $D_{5 \mathrm{~h}}-\mathrm{C}_{70}$ core with $12 \mathrm{Csp}^{3}$ atoms at positions $1,4,10,14,19,25$, $35,41,49,60,66$, and 69 (Powell et al., 2002), each of which is

Received 12 December 2005
Accepted 6 January 2006

[^0]

Figure 1
The molecular structure of (II) (50% probability ellipsoids) (left) and a Schlegel diagram of (II) (right), showing C-atom numbers (each CF_{3} group is depicted as a triangle), the $p^{7} m p$ ribbon of edge-sharing $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons and the isolated $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagon.
attached to a CF_{3} group. None of the core $\mathrm{Csp}{ }^{3}$ atoms is adjacent to one another. Thus, the CF_{3} groups are arranged on a para ${ }^{7}$-meta-para ribbon ($p^{7} m p$ ribbon) of edge-sharing $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons plus an isolated $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagon (see Schlegel diagram in Fig. 1). As in the recently published structures of $C_{s}-\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{8}$ (Goryunkov et al., 2005) and C_{1} $\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{10}$ (Kareev, Kuvychko, Popov et al. 2005), there are the usual $\mathrm{F} \cdots \mathrm{F}$ intramolecular contacts between pairs of neighboring CF_{3} groups that range from 2.526 (5) to 2.930 (5) \AA. Isomer (I) differs from (II) in that the CF_{3} groups attached to C14 and C35 in (II) are instead attached to C32 and C54 in (I).

The $p^{7} m p$ ribbon in (II) is virtually identical to the $p^{7} m p$ ribbon in (I) and may be a particularly stable feature in $\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{n}$ derivatives for $n>8$. The same $p^{7} m p$ ribbon is seen in the structure of $C_{1}-\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{10}$ (Kareev, Kuvychko, Popov et al. 2005) and in another isomer of $\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{12}$ (Kareev et al., 2006). Additionally, the structure of $C_{s}-\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{8}$ is derived from $C_{1}-\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{10}$ by removing the C 71 and $\mathrm{C} 72 \mathrm{CF}_{3}$ groups, leaving a p^{7} ribbon (Goryunkov et al., 2005).

The five shortest cage $\mathrm{C}-\mathrm{C}$ bonds are $\mathrm{C} 8-\mathrm{C} 9$ [1.338 (6) $\AA], ~ C 15-C 16 ~[1.351 ~(6) ~ \AA ̊], ~ C 2-C 3 ~[1.354 ~(6) ~ \AA ̊], ~$ C33-C34 [1.365 (6) A] and C50-C51 [1.366 (6) Å]. Note that both $\mathrm{C} 8-\mathrm{C} 9$ and $\mathrm{C} 15-\mathrm{C} 16$ are pent-hex junctions.

Experimental

The synthesis of (II) was accomplished by heating C_{70} in a stream of $\mathrm{CF}_{3} \mathrm{I}$ at 693-723 K, as described in Kareev, Kuvychko, Lebedkin et al. (2005) for $C_{1}-\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{10}$ and $C_{1}-\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{10}$. Crystals were grown by slow evaporation of a saturated benzene solution.

Crystal data

$\mathrm{C}_{82} \mathrm{~F}_{36} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$
$M_{r}=1825.04$
Monoclinic, $P 2_{h} / c$
$a=19.092(4) \AA$
$b=12.556(3) \AA$
$c=27.390(6) \AA$
$\beta=101.249(4){ }^{\circ}$
$V=6440(2) \AA^{\circ}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.882 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo Ka radiation } \\
& \text { Cell parameters from } 999 \\
& \text { reflections } \\
& \theta=1.7-25.2^{\circ} \\
& \mu=0.18 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Plate, orange } \\
& 0.22 \times 0.09 \times 0.03 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART 1K CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.961, T_{\text {max }}=0.995$
48971 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0628 P)^{2}\right. \\
& +0.436 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.65 \mathrm{e}^{-3}{ }^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXTL } \\
& \text { Extinction coefficient: } 0.00242 \text { (19) }
\end{aligned}
$$

[^1]
organic papers

The authors thank the U.S. National Science Foundation, the Volkswagen Foundation (I-77/855), and the Russian Foundation for Basic Research (Project Nos. 05-03-33051a and 06-03-33147a) for supporting this study.

References

Bruker (2000). SADABS (Version 2.10), SMART (Version 5.625), SAINT (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.

Goryunkov, A. A., Dorozhkin, E. I., Ignat'eva, D. F., Sidorov, L. N., Kemnitz, E., Sheldrick, G. \& Troyanov, S. I. (2005). Mendeleev Commun. pp. 225-227. Kareev, I. E., Kuvychko, I. V., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Seppelt, K., Strauss, S. H. \& Boltalina, O. V. (2005). J. Am. Chem. Soc. 127 8362-8375.
Kareev, I. E., Kuvychko, I. V., Popov, A. A., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. \& Boltalina, O. V. (2005). Angew. Chem. Int. Ed. 41, 7984-7987.
Kareev, I. E., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. \& Boltalina, O. V. (2006). Acta Cryst. E62, o617-o619.
Powell, W. H., Cozzi, F., Moss, G. P., Thilgen, C., Hwu, R. J.-R. \& Yerin, A. (2002). Pure Appl. Chem. 74, 629-695.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: H atoms were placed in idealized positions and refined using a riding model $\left[\mathrm{C}-\mathrm{H}=0.95 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

 Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

